

SISTEMA DE DRENAGEM DE ÁGUAS PLUVIAIS NO MUNICÍPIO DE TARTARUGALZINHO -AP PROJETO DE DRENAGEM

NOME OBRA: "PAVIMENTAÇÃO ASFÁLTICA DE VIAS URBANAS COM DRENAGEM E CALÇADA NA SEDE DO MUNICÍPIO DE TARTARUGALZINHO."

CONVÊNIO № 940129-2022-MINISTÉRIO DA INTEGRAÇÃO E DO DESENVOLVIMENTO REGIONAL

PROPOSTA NÚMERO: 16157/2022- MINISTÉRIO DA INTEGRAÇÃO E DO DESENVOLVIMENTO REGIONAL

NATUREZA DOS SERVIÇOS: PAVIMENTAÇÃO

LOCALIZAÇÃO DA OBRA:SEDE DO MUNICÍPIO DE TARTARUGALZINHO -AP

-VIAS A PAVIMENTAR EM CBUQ ESPESSURA 5,0CM:

Rua São Luiz, nº 809 - Central - CEP: 68.990-000

ÍNDICE

- 1- INTRODUÇÃO
- 2- ELEMENTOS CONSTITUTIVOS DE PROJETO
- 2.1- ELEMENTOS NECESSÁRIOS PARA PROJETO
- 2.1.1- DADOS TOPOGRÁFICOS
- 2.1.2- CARACTERÍSTICAS E INFORMAÇÕES
- 2.1.3- BACIAS DE CONTRIBUIÇÃO
- 2.1.4- CÁLCULO DAS VAZÕES
- 2.1.5- DIMENSIONAMENTO E TRAÇADO DA REDE COLETORA
- 2.1.6- CÁLCULO DAS VAZÕES PARA DRENAGEM SUPERFICIAL

Rua São Luiz, nº 809 - Central - CEP: 68.990-000

INTRODUÇÃO

O Município de Tartarugalzinho está situado ao sul do Estado do Amapá, com uma população de 15.212 habitantes, segundo o Instituto Brasileiro de Geografia Estatístico – IBGE, esta distribuídos em uma área de 6.742,00 Km².

2- ELEMENTOS CONSTITUTIVOS DE PROJETO

2.1- ELEMENTOS NECESSÁRIOS PARA PROJETO

2.1.1-DADOS TOPOGRÁFICOS

As informações necessárias para a elaboração e cálculo deste projeto foram fornecidas pelo engenheiro Sandro Raimundo Gomes Barreto, através de levantamento Planialtimétrico.

Os dados topográficos são apresentados em planta contendo a planimetria das áreas a serem drenadas e cotas de poços de visitas.

2.1.2- CARACTERÍSTICAS E INFORMAÇÕES

Lembrando que há conveniência em se conhecer o cadastro de outros subterrâneos por ventura existentes: tubos de abastecimento de água, eletrodos, dutos para cabos telefônicos ou telégrafos, etc. O conhecimento destes cadastros permite aumentar a segurança da construção e diminuir as despesas com os reparos de condutos danificados.

2.1.3- BACIAS DE CONTRIBUIÇÃO

Não foi apresentado o estudo das bacias de contribuição. Apenas as áreas foram assinaladas em plantas e o escoamento superficial foi indicado por meio de setas nas vias públicas

2.1.4- CÁLCULO DAS VAZÕES PARA DRENAGEM PROFUNDA

As vazões são calculadas utilizando-se o método racional.

Os cálculos das vazões para drenagem profunda foram feitos usando-se as fórmulas:

a- Equação da chuva de Belém.

Foi utilizado o método racional; e a região a ser drenada não dispunha de estudo quanto a intensidade, duração e frequência. Devido à área pertencer à região Norte foi utilizado a equação de chuva de Belém (Conforme estudo do Doutor em Hidráulica e Saneamento, Professor Miguel Imbiriba - UFPA).

onde:

$$\mathbf{i} = 2300 \; \mathbf{T}^{0.20}$$
$$(t + 20)^{0.91}$$

onde: T = tempo de recorrência em anos

t = tempo de concentração em minutos

 i = intensidade de precipitação mm/h ou l/s.há, sobre toda área da bacia, com duração igual ao tempo de concentração

b- Fórmula para cálculo de vazão ou deflúvio

$$\mathbf{Q} = \mathbf{C_m.i.A}$$
 onde: $\mathbf{Q} = \text{vazão de deflúvio (l/s)}$ $\mathbf{A} = \text{Área (ha)}$

 C_m = Coeficiente de escoamento superficial

OBS.: Informações a serem consideradas:

Foi adotado um tempo de retorno de cinco (10) anos, e quinze (5) minutos para precipitação máxima.

$$tc = tc(anterior) + tp$$

 $tp = \frac{l}{v} \rightarrow l$ Comprimento do trecho anterior, $v \rightarrow$ velocidade de escoamento $tp \rightarrow$ tempo percurso.

c- O coeficiente de escoamento superficial

Considerando que o Município de Ferreira Gomes em seu estado de urbanização, com ruas ainda não pavimentadas, e prevendo-se melhorias futuras para os logradouros, adotaremos para toda a área a ser drenada, um único valor para o coeficiente igual a 0.50.

2.1.5- DIMENSIONAMENTO E TRAÇADO DA REDE COLETORA

O traçado da rede coletora, o sentido do escoamento superficial, a localização das bocas de lobo e poços de visita foram previamente estabelecidas pelo projeto.

No dimensionamento das tubulações foram adotadas algumas condições para que as mesmas trabalhassem com eficiência, tais como:

- a Altura da lâmina d'água não poderia ultrapassar 90% do diâmetro das tubulações.
- **b** O diâmetro mínimo das tubulações e das bocas de lobo seriam de 400mm
- c Para o recobrimento mínimo adotou-se D/2.
- **d** Para o limite de velocidade adotou-se entre 0,60m/s e 5,00m/s.
- **e** Cada trecho da rede coletora recebeu uma numeração que vai no sentido de montante para jusante, semelhante método para poços de visita.

Rua São Luiz, nº 809 - Central - CEP: 68.990-000

		Condutos ci	rculares parcia	almente cheios						
Relações baseadas na equação de Manning										
y/d	R/d	A/d²	v/vp	Q/Qp	y/d	R/d	A/d²	v/vp	Q/Qp	
0,01	0,0066	0,0013	0,0890	0,00015	0,51	0,2531	0,4027	1,0084	0,5170	
0,02	0,0132	0,0037	0,1408	0,00067	0,52	0,2562	0,4127	1,0165	0,5341	
0,03	0,0197	0,0069	0,1839	0,00161	0,53	0,2592	0,4227	1,0243	0,5512	
0,04	0,0262	0,0105	0,2221	0,00298	0,54	0,2621	0,4327	1,0320	0,5684	
0,05	0,0326	0,0147	0,2569	0,00480	0,55	0,2649	0,4426	1,0393	0,5857	
0,06	0,0389	0,0192	0,2891	0,00708	0,56	0,2676	0,4526	1,0464	0,6029	
0,07	0,0451	0,0242	0,3194	0,00983	0,57	0,2703	0,4625	1,0533	0,6202	
0,08	0,0513	0,0294	0,3480	0,01304	0,58	0,2728	0,4724	1,0599	0.6374	
0,09	0,0575	0,0350	0,3752	0,01672	0,59	0,2753	0,4822	1,0663	0.6546	
0,10	0,0635	0,0409	0,4011	0,02088	0,60	0,2776	0,4920	1,0724	0,6718	
0,11	0,0695	0,0470	0,4260	0,02550	0,61	0,2799	0,5018	1,0783	0,6889	
0,12	0,0755	0,0534	0,4499	0,03058	0,62	0,2821	0,5115	1,0839	0.7059	
0,13	0,0813	0,0600	0,4730	0,03613	0,63	0,2842	0,5212	1,0893	0,7229	
0,14	0,0871	0,0668	0,4953	0,04214	0,64	0,2862	0,5308	1,0944	0,7397	
0,15	0,0929	0,0739	0,5168	0,04861	0,65	0,2881	0,5404	1,0993	0,7564	
0,16	0,0986	0,0811	0,5376	0,05552	0,66	0,2900	0,5499	1,1039	0,7729	
0,17	0,1042	0,0885	0,5578	0,06288	0,67	0,2917	0,5594	1,1083	0,7893	
0,18	0,1097	0,0961	0,5774	0,07068	0,68	0,2933	0,5687	1,1124	0,8055	
0,19	0,1152	0,1039	0,5965	0,07891	0,69	0,2948	0,5780	1,1162	0,8214	
0,20	0,1206	0,1118	0,6150	0,08757	0,70	0,2962	0,5872	1,1198	0.8372	
0,21	0,1259	0,1199	0,6331	0,09664	0,71	0,2975	0,5964	1,1231	0,8527	
0,22	0,1312	0,1281	0,6506	0,10613	0,72	0,2987	0,6054	1,1261	0,8679	
0,23	0,1364	0,1365	0,6677	0,11602	0,73	0,2998	0,6143	1,1288	0,8829	
0,24	0,1416	0,1449	0,6844	0,12631	0,74	0,3008	0,6231	1,1313	0,8975	
0,25	0,1466	0,1535	0,7007	0,13698	0,75	0,3017	0,6319	1,1335	0,9118	
0,26	0,1516	0,1623	0,7165	0,14803	0,76	0,3024	0,6405	1,1354	0.9258	
0,27	0,1566	0,1711	0,7320	0,15945	0,77	0,3031	0,6489	1,1369	0,9393	
0,28	0,1614	0,1800	0,7470	0,17123	0,78	0,3036	0,6573	1,1382	0,9525	
0,29	0,1662	0,1890	0,7618	0,18336	0,79	0,3039	0,6655	1,1391	0,9652	
0,30	0,1709	0,1982	0,7761	0,19583	0,80	0,3042	0,6736	1,1397	0,9774	
0,31	0,1756	0,2074	0,7901	0,20863	0,81	0,3043	0,6815	1,1400	0,9892	

0,32	0,1802	0,2167	0,8038	0,22175	0,82	0,3043	0,6893	1,1399	1,00041
0,33	0,1847	0,2260	0,8172	0,23518	0,83	0,3041	0,6969	1,1395	1,01104
0,34	0,1891	0,2355	0,8302	0,24892	0,84	0,3038	0,7043	1,1387	1,02107
0,35	0,1935	0,2450	0,8430	0,26294	0,85	0,3033	0,7115	1,1374	1,03044
0,36	0,1978	0,2546	0,8554	0,27724	0,86	0,3026	0,7186	1,1358	1,03913
0,37	0,2020	0,2642	0,8675	0,29180	0,87	0,3018	0,7254	1,1337	1,04706
0,38	0,2062	0,2739	0,8794	0,30662	0,88	0,3007	0,7320	1,1311	1,05420
0,39	0,2102	0,2836	0,8909	0,32169	0,89	0,2995	0,7384	1,1280	1,06047
0,40	0,2142	0,2934	0,9022	0,33699	0,90	0,2980	0,7445	1,1243	1,06580
0,41	0,2182	0,3032	0,9131	0,35250	0,91	0,2963	0,7504	1,1200	1,07011
0,42	0,2220	0,3130	0,9239	0,36823	0,92	0,2944	0,7560	1,1151	1,07328
0,43	0,2258	0,3229	0,9343	0,38415	0,93	0,2921	0,7612	1,1093	1,07520
0,44	0,2295	0,3328	0,9445	0,40025	0,94	0,2895	0,7662	1,1027	1,07568
0,45	0,2331	0,3428	0,9544	0,41653	0,95	0,2865	0,7707	1,0950	1,07452
0,46	0,2366	0,3527	0,9640	0,43296	0,96	0,2829	0,7749	1,0859	1,07138
0,47	0,2401	0,3627	0,9734	0,44954	0,97	0,2787	0,7785	1,0751	1,06575
0,48	0,2435	0,3727	0,9825	0,46624	0,98	0,2735	0,7816	1,0618	1,05669
0,49	0,2468	0,3827	0,9914	0,48307	0,99	0,2666	0,7841	1,0437	1,04196
0,50	0,2500	0,3927	1,0000	0,50000	1,00	0,2500	0,7854	1,0000	1,00000

2.1.6- CÁLCULO DAS VAZÕES PARA DRENAGEM SUPERFICIAL

As vazões são calculadas utilizando-se o método racional.

Os cálculos das vazões para drenagem superficial foram feitos usando-se as fórmulas:

a- Equação da chuva de Belém.

Foi utilizado o método racional; e a região a ser drenada não dispunha de estudo quanto a intensidade, duração e freqüência. Devido à área pertencer à região Norte foi

utilizado a equação de chuva de Belém (Conforme estudo do Doutor em Hidráulica e Saneamento, Professor Miguel Imbiriba - UFPA).

onde:

$$\mathbf{i} = \frac{2300 \; \mathbf{T}^{0.20}}{(\mathbf{t} + 20)^{0.91}}$$

onde: T = tempo de recorrência em anos

t = tempo de concentração em minutos

 i = intensidade de precipitação mm/h ou l/s.há, sobre toda área da bacia, com duração igual ao tempo de concentração

b- Fórmula para cálculo de vazão ou deflúvio

Para o cálculo da descarga de projeto, calcula-se a contribuição por metro linear da pista pela aplicação da fórmula racional, de vez que as áreas de contribuição, sendo pequenas, estão dentro do limite de aplicabilidade desse método.

$$Q = \frac{C \times i \times A}{36 \times 10^4}$$

Onde:

Q = descarga por metro linear da rodovia (m³/s/m);

c = coeficiente médio de escoamento superficial (adimensional);

i = intensidade de precipitação (cm/h);

A - área de contribuição por metro linear da sarjeta, (m³/m);

Coeficiente médio de escoamento superficial (c).

Rua São Luiz, nº 809 - Central - CEP: 68.990-000

OBS.: Informações a serem consideradas:

Foi adotado um tempo de retorno de cinco (2) anos, e quinze (5) minutos para precipitação máxima.

c- O coeficiente de escoamento superficial

Considerando que o Município de Ferreira Gomes em seu estado de urbanização, com ruas ainda não pavimentadas, e prevendo-se melhorias futuras para os logradouros, adotaremos para toda a área a ser drenada, um único valor para o coeficiente igual a 0.50.

d-Cálculo da capacidade de vazão da sarjeta

A capacidade hidráulica máxima da sarjeta é obtida pela associação das equações de Manning e da continuidade.

$$V = \frac{1}{n} \times R^{2/3} \times I^{1/2}$$
 (equação de Manning)
 $V = \frac{Q}{A}$ (equação da continuidade)

do que resulta,

$$Q_0 = \frac{1}{n} \times A \times R^{2/3} \times I^{1/2}$$

onde:

V = velocidade de escoamento; (m/s);

R = raio hidráulico, (m);

I = declividade da sarjeta, (m/m);

n = coeficiente de rugosidade, (adimensional);

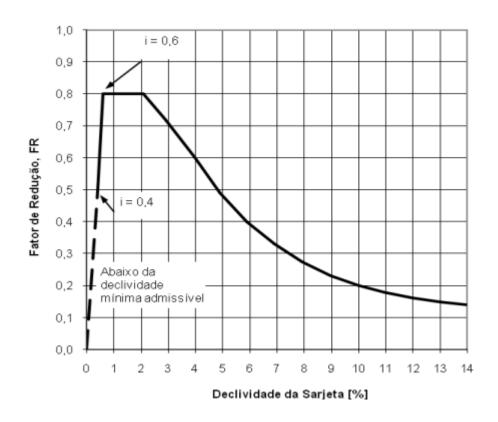
Q0= vazão máxima, (m³/s);

A =área molhada da sarjeta, (m²);

Obs.: A declividade do trecho foi obtida pela diferença de cota entre montante e jusante, dividia pela distância do trecho (entre estacas). Para a seleção dos trechos buscouse os que apresentavam o maior grau de similaridade entre inclinações, deste modo foi obtido uma inclinação média entre os trechos selecionados.

e- Cálculo da vazão admissível na sarjeta

$$Q_{adm} = F \times Q_0$$


onde:

Q_{adm}= vazão admissível, (m³/s);

F= fator de redução (Tabela, relação declividade da sarjeta e fator de redução);

 Q_0 = vazão máxima, (m³/s);

Rua São Luiz, nº 809 - Central - CEP: 68.990-000

